

Annex 1: Overall course description of FAME^{AIS} Master

M1 Grenoble INP-UGA HOME UNIVERSITY (first year students)

AUTUMN SEMESTER					
Course Name	ECTS	Workload	Module		
FAMEAIS /e-project	5	150	Collaborative course with partners		
Solid state chemistry	2	60			
Crystallography	2	90	Fundamentals of materials science		
Phase transformation	2	60			
Elaboration I	4	120			
Sustainability in industrial engineering or From the idea to innovation & venture	3	90	Materials Elaboration & Sustainability		
Polymers	3	90			
Surfaces & Interfaces	1,5	45	Applied materials		
Microstructure & Properties	1,5	45			
Modelling tools & AI techniques in Material Science	4	120	Modelling tools & Functional materials		
Functional materials physics	2	60			
TOTAL	30				
SPRING SEMESTER					
Course Name	ECTS	Workload	Module		
FAMEAIS /e-project	5	150	Collaborative course with partners		
Strategy & Finances	2	60	Collaborative project		
Materials characterisation	3	90			
Semiconductor physics	2	60	Materials basics & characterisation		
Practical Lab Work	2	60			
Elaboration II	3	90	Applied materials		
Materials families	2	60	Applied Haterials		
	2	60			
Advanced modeling for materials					
Advanced modeling for materials Functional polymers	2	60	Modelling tools & applications		
-	_	60 60	Modelling tools & applications		
Functional polymers	2	60	Modelling tools & applications Professional training		

M2 Grenoble INP-UGA HOME UNIVERSITY (second year students)

AUTUMN SEMESTER			
Course Name	ECTS	Workload	Module
Numerical modelling for materials & lab projects	6	300	Advanced modelling tools for materials design
Material & process selection	4	180	Materials selection
Life cycle, recycling	2	60	
Clean room Practical works	4	120	
Process flow for micro tech.	2	60	From materials to device
Laboratory project	4.5	135	
Packaging & Durability	1.5	60	
Sustainability in industrial engineering or Sustainable design and management	3	90	
Seminars & visits	1	30	Professional training
Economy and society: environmental issues or Management & work relations	2	60	
TOTAL	30		
SPRING SEMESTER			
Master thesis / Professional training			
TOTAL	30		

M1 TUDa HOME UNIVERSITY (first year students):

AUTUMN SEMESTER						
Course Name	ECTS	Workload	Module			
Mandatory Courses						
FAM/e-project	5	180	Collaborative course with partners			
Surfaces and interfaces	5	150	Surfaces and interfaces			
Research Lab I	4	120	Research Lab I			
Functional Materials	6	180	Functional Materials			
	Elective co	urses				
Micromechanics for Materials Science*	6	180	Micromechanics for Materials Science			
Computational Material science**	5	150	Computational Material science			
TOTAL	30					
SPRING SEMESTER						
Course Name	ECTS	Workload	Module			
FAM/e-project	5	180	Collaborative course with partners			
Advanced Characterization methods of Materials Science	6	180	Advanced Characterization methods of Materials Science			
Theoretical Methods in Material Science	6	180	Theoretical Methods in Material Science			
Machine Learning in Materials Science	6	180	Machine Learning in Materials Science			
Advanced Research Lab (7)	7	360	Professional training			
TOTAL	30					

^{*} The Course "Micromechanics for Materials Science" can be replaced by the course "Quantum Mechanics for Materials Science (6 ECTS)"

^{**} The Course "Computational Material science" can be replaced by any course of our Materials Science department with 4 ECTS which are listed in "elective courses M. Sc. Materials Science" in the TUCaN system (see elective courses for FAME^{AIS} M2 on the next page). Students without a bachelor degree in Materials Science or Physics can also use the course "Concepts in Materials Physics (6 ECTS)" on request.

[°] The module "Discussion with Mentor" is also compulsory

M2 TUDa HOME UNIVERSITY (second year students)

AUTUMN SEMESTER			
Course Name	ECTS	Workload	Module
Mandatory Courses			
Micromechanics for Materials Science *	6	180	806833
Research Lab I	4	120	803911
Elective courses **			
Ceramic Materials: Syntheses and Properties. Part II	4	120	1987662
Concepts in Materials Physics	6	180	39824
Computational Material science	5	150	2068015
Electrochemistry in Energy Applications II:	4	120	1972687
Engineering Microstructures - Processing, Char. and Application	4	120	2275838
Finite Element Simulation in Material Science	4	120	46398
Focused Ion Beam Microscopy: Basics and Applications	4	120	2616244
Fundamentals and Techniques of Modern Surface Science	4	120	2301770
Interfaces - From wetting to friction	4	120	42380
Introduction to Scanning Electron Microscopy	1	30	2188545
Magnetism and Magnetic Materials	4	120	36902
Materials Chemistry	4	120	1969400
Mathematical Methods in Materials Science	4	120	408353
Mechanical Properties of Ceramic Materials	4	120	2714494
Mechanical Properties of Metals	4	120	38728
Metastable Materials: Structure, Properties and Processing	4	120	46763
Micromechanics and Nanostructured Materials	4	120	1888316
Modern steels for automotive applications	4	120	2626106
Organic Functional Materials: From LCD to Molecular Circuits	4	120	46033
Polymer Materials	6	180	413101
Porous Ceramics for Energy-Related Applications	4	120	44937
Quantum Mechanics for Materials Science	6	180	768482
Semiconductor Interfaces	4	120	2287161
TOTAL	30		
SPRING SEMESTER			
Master thesis	30	900	
TOTAL	30		

- * The Course "Micromechanics for Materials Science" can be replaced by the course "Quantum Mechanics for Materials Science (6 ECTS)"
- ** All eligible "Elective courses" are listed in "elective courses M. Sc. Materials Science" in the TUCaN system. Only the following courses cannot be chosen: "Surfaces and Interfaces", "Functional Materials", "Materials Science for Renewable Energy Systems "or "Advanced Research Lab". Students without a bachelor degree in Materials Science or Physics can also use the course "Concepts in Materials Physics (6 ECTS)" on request.
- $^{\circ}$ The module "Discussion with Mentor" is also compulsory

M2 University of Augsburg (second year students)

AUTUMN SEMESTER							
Course Name	ECTS	Workload	Module				
Mandatory	Mandatory Courses						
Laboratory Project	10	300	Conducting and Presenting Scientific Work				
Elective Courses from Structural a	and Function	nal Material	s (1-2)				
Fiber Reinforced Polymers for Engineers	6	180	MRM-0025				
Ceramic Matrix Composites	6	180	MRM-0126				
Bioinspired Composites	6	180	MRM-0128				
Mechanical Characterization of Materials	6	180	MRM-0136				
Complex 3D Structures and Components from 2D Materials	6	180	MRM-0142				
Physics and Technology of Semiconductor Devices	6	180	PHM-0048				
Nanostructures / Nanophysics	6	180	PHM-0049				
Solid State Spectroscopy with Synchrotron Radiation and Neutrons	6	180	PHM-0052				
Ion-Solid Interaction	6	180	PHM-0056				
Physics of Thin Films	6	180	PHM-0057				
Organic Semiconductors	6	180	PHM-0058				
Magnetism	6	180	PHM-0059				
Low Temperature Physics	6	180	PHM-0060				
Superconductivity	6	180	PHM-0066				
Spintronics	6	180	PHM-0068				
Applied Magnetic Materials and Methods	6	180	PHM-0069				
Non-Destructive Testing	6	180	PHM-0122				
Fiber Reinforced Composites: Processing and Materials Properties	6	180	PHM-0163				
Modern Metallic Materials	6	180	PHM-0168				
Plasma Material Interaction	6	180	PHM-0193				
Physics of Cells	6	180	PHM-0203				
Analog Electronics for Physicists and Materials Scientists	6	180	PHM-0225				
Digital Electronics for Physicists and Materials Scientists	6	180	PHM-0226				

Symmetry concepts and their applications in solid state physics and materials science	6	180	PHM-0228
Optical Excitations in Materials	6	180	PHM-0252
Dielectric Materials	6	180	PHM-0253
Porous Functional Materials	6	180	PHM-0268
Materials for electrochemical energy storage	6	180	PHM-0269
Photonic Materials	6	180	PHM-0271
Materials under extreme conditions	6	180	PHM-0274
Elective Courses from D	igital Materi	als (1-2)	
Analyzing Massive Data Sets	8	240	INF-0277
Machine Learning and Computer Vision	8	240	INF-0316
Finite element modeling of multiphysics phenomena	6	180	MRM-0112
Continuum Mechanics and Material Modeling	6	180	MRM-0152
Theoretical Concepts and Simulation	6	180	PHM-0174
Elective Courses from Sus	stainable Ma	terials (1)	
Sustainable Chemistry of Materials and Resources - Chemical Reactions and Cycles	6	180	MRM-0087
Oxidation and Corrosion	6	180	PHM-0167
Analytical Methods for Crystalline Sustainable Materials	6	180	PHM-0266
Fundamentals of Materials for Energy	6	180	PHM-0267
SPRING SEMESTER			
Master thesis	26	780	Finals
Colloquium	4	120	Finals
TOTAL	30		

M2 University of Aveiro (second year students)

AUTUMN SEMESTER				
Course Name	ECTS	Workload	Module	
Mandatory (Courses			
Nanochemistry	6	162		
Project	12	324	Applied projects/ Professional training	
Elective Courses	(2 to select)			
Free selection from UA's list of electives of 2nd cycle				
Macromolecular Chemistry	6	162		
Spectroscopic Techniques	6	162		
Materials Characterization II	6	162		
Quantum Technologies	6	162		
Materials & Sustainability	6	162		
Advanced Materials & Biomimetics	6	162		
TOTAL	30			
SPRING SEMESTER				
Master thesis	30		Professional training	
TOTAL	30			

M2 University of Bordeaux (second year students)

AUTUMN SEMESTER				
Course Name	ECTS	Workload	Module	
Mandatory c	ourses			
Hybrid and Nanomaterials	6	180		
Large Scale Facilities	6	180		
Elective cou	urses			
Magnetic & Dielectric Properties	6	180		
Applied Nanosciences	6	180		
Photonics, Laser and Imaging	6	180		
Energy, Communication & Information	6	180		
Molecular Simulation / Sustainable Materials and Methods	6	180		
Innovative & Composite Materials	6	180		
TOTAL	30			
SPRING SEMESTER				
Master thesis	24			
Bibliographic Project / two projects on sustainability and AI	6			
TOTAL	30			

M2 Université catholique de Louvain (second year students)

Depending on whether student spreads master thesis over two semesters or not, the courses are taken either in the first SEMESTER or in both the first and second SEMESTERS; the student selects 30 course credits in total.

Course Name	FCTC	NAV a selection of the	No. dada		
Course Name	ECTS	Workload	Module		
Mandatory Courses					
Important: these courses must be followed only w student; otherwise, the	•		vas followed before by the		
Polymer Science and Engineering	5	150			
Molecules and materials analysis	5	150			
Science and engineering of metals and ceramics	5	150			
Deformation and Fracture of Materials	5	150			
Electiv	ve courses				
(other courses are possible, provided the student	demonstrate	es the consiste	ncy of his/her curriculum)		
Physics of Nanostructures	5	150	Nanotechnology		
Design of Micro- and Nano-Systems	5	150	Nanotechnology		
Macromolecular Nanotechnology	5	150	Nanotechnology		
Micro- and Nano-Fabrication Techniques	5	150	Bio- and Nanotechnology		
Atomistic and Nanoscopic Simulations	5	150	Nanotechnology		
Transport Phenomena in Solids and Nanostructures	5	150	Nanotechnology		
Physics of nanostructures	5	150	Nanotechnology		
Nanoelectronics	5	150	Nanotechnology		
Advanced transistors	5	150	Nanotechnology		
Rheology	5	150	Polymers & Macromolecules		
Polymer chemistry and Physical chemistry	5	150	Polymers & Macromolecules		
High performance metallic materials	5	150	Materials engineering		
Sintered materials and surface treatments	5	150	Materials engineering		
Crystallographic and microstructural characterisation of materials	5	150	Materials engineering		
Welding science and technology	5	150	Materials engineering		
Metals processing and recycling	5	150	Materials engineering & sustainable development		

Biomaterials	5	150	Biotechnology
Bioinstrumentation	5	150	Biotechnology
Materials selection	5	150	Sustainable development and environment
Durability of materials	5	150	Sustainable development and environment
Societal challenges with polymers	5	150	Sustainable development and environment & Polymers & Macromolecules
Renewable energy sources	5	150	Sustainable development and environment
SECOND SEMESTER (or spread over two semesters)			
Master thesis	25	750	
Master thesis seminar	5	150	
TOTAL	60		

M2 Université de Liège (second year students)

Elective courses during Autumn	and Spri	ng Semester	s (total of 30 ECTS)	
Among the required 30 ECTS, courses for up to 10 ECTS can be chosen as well from other study programmes organized by ULiège, upon validation by the local coordinator				
Course Name	ECTS	Workload	Module	
AUTUMN SEMESTER				
Quantum Chemistry	4	120	Quantum materials design	
Physics of functional oxides	4	120	Quantum materials design	
Physics of nanomaterials	4	120	Quantum materials design	
Spectroscopy of materials	4	120	Quantum materials design	
Modelling molecules and extended systems	4	120	Quantum materials design	
Quantum modelling of materials properties	4	120	Quantum materials design	
Macromolecular Chemistry	4	120	Functional materials & nanostructures	
Advanced solid-state chemistry	4	120	Functional materials & nanostructures	
Nanomaterials, (electro)synthesis & applications	4	120	Functional materials & nanostructures	
Characterization of nanostructures by SPM techniques	2	60	Functional materials & nanostructures	
Polymers and environment	2	60	Functional materials & nanostructures	
Introduction to solid state NMR	2	60	Functional materials & nanostructures	
Physics of semiconductors	2	60	Functional materials & nanostructures	
Physics of materials for energy	4	120	Functional materials & nanostructures	
Introduction to machine learning (from 2024-2025)	4	120	Computational methods	
High performance scientific computing (from 2024-2025)	4	120	Computational methods	
SPRING SEMESTER				
Physics of magnetic materials	4	120	Quantum materials design	
Molecular logic	2	60	Quantum materials design	
Intrinsic and induced topological properties of matter	4	120	Quantum materials design	
Nanofabrication: principles and techniques	4	120	Functional materials & nanostructures	
Physics of superconductors	2	60	Functional materials & nanostructures	
Deep learning (from 2024-2025)	4	120	Computational methods	
TOTAL	30			
ALL YEAR LONG (or only Spring Semester)				

Research master thesis	28	
Physics and chemistry of materials: complements	2	
TOTAL	30	
Grand TOTAL	60	

